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ON THE IDENTIFICATION OF LINEAR AND NONLINEAR STRUCTURAL SYSTEMS

Objective:  The development of computational techniques for the identifi-
cation of linear and nonlinear mechanical systems subject to random excitation,
L0

Summary: A computational procedure has been suggested to determine the
differential equation governing the motion of linear and nonlinear structural
systems subject to random excitation when the system excitation and response
are observed, Such a procedure can yield the transfer functions impedances
and damping coefficients of linear systems as well as determine the non-
linearities in the spring and damping coefficients governing the motion of
nonlinear structures. |

This report includes a description of the procedural approach
taken to the identification of structural systems as well as a detaiied descrip-
tion of the quasilinearization-least squares-étagewise smoothing parameter
estimation procedure ihai occupies a central role in the computational pro-
cedure. Preliminary computational results illustrating the identification of
a simulated one degree of freedom system achieved by the methods suggested
are also presented, The anticipated activity in the next quarterly interval
will be to verify the computational procedure for multi~-degree of fresdom
systems and to examine the performance of computational model hypothesis

testing procedures, m
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i1, A DESCRIPTION OF THE APPROACH.

The objective of the investigation is to develop a computational
procedure for the identification of mechanical structures that are driven
by a random excitation. In particular, the structures can be conceived
of as an arbitrary collection of lumped spring-mass-damper systems, i.e.
an n degree of freedom system in which the springs and dampers may be
nonlinear, The system is identified by specifying the number of degrees
of freedom and the spring-mass~damper coefficients in the linear case, or
a polynomial description of the nonlinearities in the nonlinear case.

The approach employed for the identification of the unknown struc-
ture consists of 3 stages, The first is the generation of hypotheses
concerning the number of degrees of freedom of the system and the form
of the nonlinearities. In effect, this prescribes a conceptual and computa-
tional model for the system. In the second stage, the observed data,
corresponding to the excitation and response of the system, is used to
determine parameters or coefficients of the model assumed to represent
the system. The final stage consists of a verification of the validity of
the assumed computational model, This is to be accomplished by compar-
ing the response of the system model {o the response of the actual system.
Subject to an "energy'' response criterion the assumed model is either
accepted or an alternative model is assumed and computed on, In case
of the latter alternative; the procedure is iterated, starting once again
with stage 1.

The principle effort in the investigation is in the development of
suitable computational procedures to accomplish the parameter estimation,
i, e, the fit of the model to the observed data, specified as stage 2. The
technique to be explored for this purpose involves the incorporation of
least squares and sequential estimation procedures into the quasilineari-
zation method of system identification,



Very briefly, the quasilinearization procedure is an extension
of the Newton-Raphson method of finding the roots of an equation to the
problem of finding a piecewise linear {and hence, linear time varying)
computational equivalent of a system of nonlinear differential equations.
In our problem, the nonlinear system of differential equations is the
model assumed to represent the structure. The parameters or coeffic-
ients of the model are, in fact, unknown and an initial guess is made of
these parameters to permit computation of the assumed model response
(with the guessed parameters) to the system excitation. In the quasilin-
earization procedure, a sequence of observations are made of the system
displacement, (the minimum number of observations made is equal to the
number of unknown system parameters}, and these obsgervations are used
in conjunction with a corresponding set of observations on the assumed
model to improve the guess or estimate of the unknown model parameters.
The computational procedure can be iterated; it has the very attractive
computational feature of quadratic convergence, and this is in fact derived
from the correspondence of the procedure to the Newton-Raphson method.
In effect, the quasilinearization procedure accomplishes system identifi-
cation by solving a multipoint boundary value problem,

One limitation to the application of the quasilinearization procedure
to the identification problem is that the minimum number of observations
of the system response may not be sufficient to uniquely specify a solution
of the system equation. For example, the solution of the second order
linear differential equation that characterizes a one degree of freedom
system may pass through two particular displacements at two different
time instants for an infinite number of one degree of freedom systems.
For this reason, as well as the fact that the observations may be noisy,
the least squares technique of parametier esiimation is employed to per-
mit more than the minimum number of observations to be employed io
enhance our estimate of the unknown parameters.



One complication introduced by using the least squares pro-
cedure is that the estimation of parameters by this procedure involves
inverting a matrix whose size increases as the number of observations
increase, To circumvent the increase of computational time and effort
required for an increasingly large number of data points, we resort to
stagewise estimation procedure which obviates the requirement for
matrix inverasion,

A more thorough description of the quasilinearization, least
squares and successive approximation procedures appear in section {3).
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2. DESCRIPTION OF THE EFFORT AND THE RESULTS FOR THE

FIRST QUARTERLY INTERVAL.

The principle effort in this quarterly interval has gone intc an
attempt to implement the digital computer programs to achieve the
quasilinearization - least squares and stagewise smoothing required
for the proposed system identification procedure. Also required are
digital computer programs to simulate the performance of mechanical
structures driven by random excitation,

To date, the computational procedure has been successfully
applied to the identification of a one degree of freedom system with an
assumed one degree of freedom system model. Some typical computia-
tional procedures and results are described and illustrated in section {4).



3. ON THE QUASILINEARIZATION - LEAST SQUARES-STAGEWISE
SMOOTHING PROCEDURES.

3.1 History.

The quasilinearization technique is reputedly due to Hestenes at
the Rand Corporation in 19491. The mathematical theory was investigated
by Bellman in 19552 and by Kalaba in 19595,

In the recent book by Bellman and Kalaba4, a historical mathemat-
ical perspective is presented which identifies the quasilinearization tech-
nique with mathematical activities in geometric duality theory, the calcu-
lus of variations, differential inequalities and the function space approxi-
mations by Kantorovich.

A first attempt at an application of the quasilinearization technique
to the identification problem was made by Shridhar and Kumar in 19645 and
a discussion of the application of the least squares procedure to qua ilinear-
ization was provided by Lavi and Strauss in 1965%, A very significant appli-
cation of the ieasi squares thecry and stagewise estimation procedure was
made by Swerlir.g7 in 1959 and it has since been reinterpreted and refined
by H08 and Lee and Ho" in 1964, Hypothesis testing procedures are class-
ically a part of the subject of statistical inference. Consequently, litera-
ture on this subject is adequately treated in numerous texts. For example,
see Middleton!?,)

At present, no comprehensive work exists which permits the quasi-
linearization-least squares-stagewise smoothing and hypothesis testing pro-
cedures to be systematically employed for engineering use in the identifica-

tion of linear and nonlinear systems. The objective of our effort is then to

©

fill that gap and to achieve a practical implementation of the computational
procedures that will permit useful identification of linear and nonlinear
structural systems.



3.2 Introduction to Quasilinearization,

3.2, 1 Background, Newton's Method.

The concept underlying the technique of quasilinearization is
essentially that of Newton's methocl11 of finding the roots of the solution
of an equation. For completeness of exposition, the Newton method is
outlined below.

Assumed that we are given the equation*

f(x) = 0 (1)

and we wish to determine the roots of this equation. First guess solution
to this equation say, x 0° and assume x o 18 such that f(xo) £0,
That is, x o does not satisfy the equation. The Newton technique is an

iterative means of obtaining the roots of (1), Rewrite (1) in the form
flx +e) =0 (2)

where e is an 'error" term and expand (2) in a Taylor series around
the point X Equation (2) can therefore be written as

fx )+ el (x )+ -—;- e x ) +.... =0 . (3)

Designate the error term e by e =Xy - X, where x; isto be the
next ''guess' to the solution of (1). Then keeping only the linear term,

* In this report, s2quations are referred to by a system analagous to the Dewey
Decimal System. Equations are numbered starting with the number 1 in each
section, They are referred to by that number by statements in the same
section, References to equations in other sections have the numerical prefix
corresponding to the section in which the equation appears,



(3) can be rewritten as

fx)+& -x ) &x)=0 (4)
Solving (4) for the next guess, x, yields

Xy =X, - f(xo) / (xo) . 5)

Graphically, the situation is depicted in Figure 1,

f
i) = £'lx Mx, - x,)
AN
4 ? £x )
Xy =X_ = ==
/ 'F('xo) 1 (o} fﬁof
y/mn
| i
T x, Xo

Figure I, ILLUSTRATION OF THE NEWTON METHOD

The procedure is iterated, the n-+ lst approximation to the root
of equation (1) is given by

f(xn)
ntl = %n T TR - ()

n



The procedure converges quadratically, which means that with
the root of (1) given by X and k a constant {independent of n}

X .1 X <k'x -xlz . {7)

A more detailed discussion of the convergence properties of the Newton
iteration procedure appears in references 4 and 11,

The quasilinearization technique is a function space generalization
of Newton's method,

3.2,.2 The One Dirnensional Problem.

In this section, the quasilinearization solution of a boundary
value problem is demonsirated to provide a computational algorithm for
the solution of the identification problem. For illustrative purposes, a
first order nonlinear differential equation of known form with an unknown
parameter is identified.

Assume that we are given the equation

glx, x; t) =0 {1)

which is nonlinear and is known to within a parameter. In this case,
assume the unknown parameter is the initial condition, x o Also,
assume that a single observation is made of the solution, say for
example at t=§, it is known or observed that =x(5) =c where ¢
is some particular number, Our objective is to estimate the unknown
initial condition X, using the quasilinearization technique,



An equivalent form of (1) is
x=flxt) . (2)

Proceeding in a manner similar to that of the Newton iteration
technique, guess a solution, say xo(t) . to {2). Also, assume the
solution, xoit)‘ is in error by an amount eft) ,

The guessed solution is in the form

x () + (1) = fix () +elt): 1) . )

Then to within second order terms, the Taylor series expansion
of (3) is

x () + o) = flx fer 1) + &L e+ %2%’- ...
o

X= xO(t)
(4)

Now truncate the expansion after the first term and identify eft) as the
difference between the first guess x 0tZt) of the solution to (1) and the
second guess x,(t). Thatis, let

eft) = x;{t) - x _(t) {5)
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Applying (5) to ¢4) yields

2 - x 2

of ) .y Of
1°%1 T8x | x-= x,{t) + ﬁxo(t)’“) %

09x {(x= xo(t) . (6}

Equation (8) is rewritten in the form of the time varying linear equation

x, =a,{thx, +b(t) 1)

of of

= —croee = F - -
where al(t) 6% xﬂxoﬁ) : b, (t) fA,xoth} X, Bo

x = x_4&)
o

Now, since xozi.’t) is known, both a 1(",t) and bf{t) are known and the
solution to {7) is

Alft) A, &) ,
xl(t) = }s.o e + e fo e b, (L) dx {8)

where Al(ﬁ = jf) ajt'} dt' . For later reference, {8)is wriiten in the

state space notation = ,
. t ,
xl(t) =q &, on0+ fo Ht,A)bEA)dr . {9}

ALz
in {9), Ql(t, vz 1 and X, is the initial condition x{ - o) .

The quantity &t to} is known as the fundamental or transition mairix.

0,



The fundamental mairix g{t, t,}) is determined from the
complementary solution of (7). This sclution is in the form

x,@) = aft, t)alt) . (10)

Equation (10) exhibits the role of the transition matrix sbl(t,, to) in
transforming the system behavior or state at time to‘ to its state at
time ¢,

Differentiating both sides of (10),

X080 = i, t dft ) (11)

and applying (10) and (11) to the complementary differential equation in
(7) yields

Gt t )= a @) ait, t ) (12)

The quantity a 1é‘c) is known, therefore, with <I>1(t,, th=1,
the identity matrix, {12) can be solved for the fundamental mairix
@{t, t ). Then, with b;{t) known, the right hand integral in (9)
can be computed. This we assume done,

Now recall that

(i) we have guessed the solution %,(t) to the original
nonlinear equation (2)

{ii) we have used this guess to determine the linear time
varying differential equation approximation to {2) given by {7)
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(iii) the solution to (7) the approximate equation is given
by (9)

(iv) we have knowledge of a single point observation of the
true solution to (2), say at time t=5 i.e. We know x(5).

We require the solution (9) to satisfy the observation x{5). That
is. we make x,(t) identically equal to x(5) and write (9) at time t = 5 in
the form

¢1(5,0)310=x(5) -fg @1(5, A) b, (A da . 13)

Equation {13) can be solved for the unknown initial value
x(b) x(t = 0) = x 0 and this value can be used in (9) to generate the
solution x,(t) for all t. This solution x,{) now constitutes a
new guess of the solution of (2) and the computation process can be
repeated to determine the new quantities a,{t) and b, {} . Successive
solutions x3( £). x4(t) etc. can be computed until these solutions
differ by an arbitrarily small amount,

3.3 Quasilinearization Applied to the Identification of Nonlinear
Mechanical Systems,

In this section we consider the identification of the parameters
of a one degree of freedom nonlinear system. The differential equations
of motion of the system is given by

2
M%%+kl(1+a1(—%¥‘-)2)%{'+k2(1+a2y2)y=x€t)a (1)
t
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Assume that the driving force x/t) and the mass are known {and

the mass is normalized to M=1) but that the linear and nonlinear

damping and spring coefficients k,, a 1» K. a; are unknown.

Equation (1) can be rewritien in state vector form in the
following way. Let ¥ =y and ¥ =¥, then

Y1 %759
: , 2 , 2 e
Yo = ~[ Ky {1+a; yo)y, tky{l+a,57)y;] +x(1) £2)
The unknown coefficients are constants, consequently they
satisfy the following differential equations.
k,=0, a0, ky=0,820 i3}
It is convenient to adjoin the set {3} to the set 2) with the
notation
1 2 5 & 5 5 _ .
qQ =y;» 4 *¥5. @ "k, q =a,, 9" =k, g° =2, (4)

A new set of 6 firsi osder nonlinear differential equations in

the siate vaxiable vector componenis ql.., ¢ « « @ may be writien



Ve s
t

?Ta' vxi, s

>

3 4, 2.2 6, 1.
q [1+q€qzvlq2»'q5i1+q L

‘q

4

i 6
q = o, q =ogq5

= ¢ o q o= s}

where q:io}, the initial condition vector is assumed te be unknown

in vecior form 4{8) may be written

q = ft\ﬁqéft?;t}%"bx{t}?;q(tfo?:qc {6}
Compare (6} with equatien (3.2.2.7). We will now linearize the vecior

of functicns fiqt);t) so that ‘6: will become the vector matrix equiva -
1 of the form {3.2.2.7).



Assume a solution to (6) and designate this, q o(t) . Now
consider a function space Taylor series expansion of {6) around the
assumed solution q, {t) in the form.

Q) = flay(t): ) + = [ a0 - q 01+....45x(t). (1)
q=q,%)

Equation (7) may be rearranged neglecting terms of second and higher
order in the form '

a,(8) = 3 [f4a_(0):t] q,(t)+ y[a iv); t] (8)
where

v [a fth; t] = #g t); t) - T [£g _(t);t) ] q (1) + b x{t) (9}
In (9), J[f(qoit); t) ] is the Jacobian matrix

U SCREIERIEE - PR (10)




18~
or
afl af1 -?_,flr
8ql 8q 2 ) " dqY
JIfla (t); t)] = 1
of 8f of
_2 2 2
aqT aqz' ° 0 aq
of of
T ol
uq‘_ @ © ¢ o e o o ¢ a & an '
; iqfqatt)

The Jacobian matrix for the system given in {1} appesrs oa the
next page. Equation (8) is now the vector-matrix equivalent of (3 2. 2.7)
and can be solved in iimilar manner,

For both syst:ms (8) and {3.2. 2, 7), observation of a single siaie
variable is assumed ‘o be available. While this is sufficient in the one
dimensional situation o generate an estimate of the single compenent
X the initial conditimn X, that is not the case for {8)., in order to
generate an estimate «f the unknown € componeats initial cordiiicn
vector required for the solution of {(8), it is necessary io make obser-
vations of the single available state of (8} at six differernt timee. The
details of the soluticl. process, (this corresponds io tae solusicn of a
multipoint boundary ‘alue problem)} will now be examined,

The solution f {8) can be pui in the form

ql(t) =q1C (t)+§1P€t) {1y
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where qlc {t). qlp {t) respectively designate the complementary and
particular solution vectors, Alternatively. we may write the solution
to (8) in the state vector form

q () = gt t ) q,(t°)+f:o &t 1) y{A) dA (13)

where &(t, t ) is the fundamental matnx
Identify the particular solution, 9, (t) . a8 a solution of the
differential equation

a, (0 = 3116q, 715 0] q (0 + v G (): 1) (14)



with the initial condition qlp (0) = 0, Correspondingly identify the
complementary solution, qlc(t) » 8 solution of the equation

a,5(t) = 3Lt (t); 0] @, (1) (15)

with the initial condition vector q:_( to) .
The solution of {15) is in the form

q,( = aint)aft) (16)

where both the fundamental matrix & (t, to) and the initial condition
vector q(to) are unknown., The fundamental matrix, &(t, to) is
obtained in a manner similar to that employed for the one dimensional
_case, The derivative of {16) is

&
(1]
«J

AT 4

q,5(t) = aft,t daft) .
inserting (16) and (17) into (15) yields the differential equation
ot t) = J( f{qo(t); t] ot tO) : {18)

Equation {18) can be solved for &,(t, to) with &( ty to) =1 ,
the identity matrix. With &(t, t o) known we can compute the integral
in (13) as the known particular solution qlP( t) . Consequently, we now



have the solution to {8} in the form

In (19) only the initial condition vector

ql(t) =

P
2t t )alt))+q; () .

q(to)

(19)

is unknown, We solve

for q(t o) by operating on the observed valves of the trajectory of
the solution of (8) ,

q56;1

qf&)

3

©

qf(t)

where

q,

——

q," Pet)

——

{qlét)} J=

state vector q,ét).
the set of components of the particular solution and imt1a1 condition vector.
Assume that there is a single observable quantity, the dis-
placement y(t ) of the solution of equation (2) at the different tlmes t,
These observations correspond to observations of g t(t ).

» 1 10
(t.t) ®

2,1
Qz (tvto)ooo

6,1
&  (t t)
. (o]

2
(tt).

Q0O

o 29 00

1,6
2y

2,
$-

L]

°

Cb
n

6
it.t)

the differential equation of the unknown syatem
In expanded form we can write {19) as

(20)

(tt)

t.t)

1,2,...6 designate set the component of the

and similarly { q13° p(t)} { qJ (t )} are

qll )

af (&)

Our objective is to use these observations to determine the unknown initial
condition vector q(to) and hence generate a new approximation ql!{t)
to the sclution of the original set of nonlinear differential equations,
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1 Lp. 4 (.11 1,2 1
q,{¢,)~-q; (tl)' @y T hLt) @ (tlto),n...é‘s(tl.to) qi &)

1 1, 1,1 1,2
1) - ar P et et ep et on%k,e) | | a6

1 1, 1,1
ajtt-a," P | e tegt) . v 2 %t oS 8

That this can be accomplished can be seen by writing 8 equations
in the first component observation qll(ti); i=1,2, ... 6 for the gix
unknown initial condition components q.{(to). ji=1,2,....6 in
the form

- T

L] e s 0 .

0o

Equation (21) can also be written as

6 . . :
[a, ) - q,+Prt) ) ;3&»3 tptadt) i=12,...6

or in the vector matrix form
1 . 1P - 1, '
[a"{)-q;" ()] = o {t,t)q,(t)
Under the assumption that &'} (t,t) 18 nonsinghlar, its in-

verse, [4?11' " (¢, t)] -1, exists and (23)can be solved for q,(t,) inthe
form

a it =lo% (6, 17%0q, ! 0 - o'P (0]

—

{(21)

(22)

(23)

(24)




Knowledge of qj{t ), of (23) inserted into (19) permits the
approximation q,(t) to be computed as the solution of the set of
equations (8). We recall parenthetically that, ql(t) and qlp(’t) .
both the complementary and particular solutions to (8) are generated
with the assumed solution q O(t) . Consequently q,(t) is incorrect
{since it is dependent upon q (t)), however, we use it to generate
a new approximation qz(t) etc. Kalaba has demonstrated that the
convergence properties of the quasilinear solution to the original non-
linear equations has quadratic convergence properties, that is, if the true
solution of (8) is q{t) and q.(t) , qp ;{t) are successively the
kth and k + lst approximate solutions then

“ Q.1 (t) - att) “ <M ”qk(t) - qft) “2 (25)

where M is independent of k.
To summarize, the sequence of steps in obtaining the quas-
ilinear solution to the noniinear differential equations are the following:

1, Assume a soiuiicn g o{t) to the angmented linearized
nonlinear differential equations

2, Solve for the fundamental matrix

3. Solve for the particular solution

4, Use the observations y(ti) = qlﬁti) i=l2,...n to

get a 2nd approximation {estimate) of the unknown initial
conditions vector q(to) .

5, Steps 2, 3, 4 give a new approximation q 1(t) to the
solution of the original set, Repeat steps 2, 3, and 4
until successive solutions differ to an arbitrary extent.
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3.4 The Least Squares Techniques Applied To The Quasilineari-
zation Solution.

The determination of the unknown initial condition vector and
hence the identification of unknown parameters by the technique of
quasilinearization suffers from the difficulty that the solution for n
parameters with n observations is not necessarily unique., A simple
graphical illustration of the response of a one degree of
freedom linear system to a step input will illustraie the point, The
response of such a system for two different degrees of damping is
illustrated below.

K"DRMPINC:; RaTio (2)

\ ==

.

DameinG Reavvo (1)

time

Figure 2. RESFONSE OF A ONE DEGREE OF FREEDOM LINZAR
SYSTEM TO A STEP INPUT PARAMETRIC IN DAMPING RATIO,
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Observe that there are a number of points of overlap between
the two solutions. I, for example, the points labeled* are chosen,
the technique described in Section 8. 2 can be satisfied by either of the
solutions drawn (as well as an infinite number of other solutions).

For this reason, as well as because of the fact that the observa-
tions of the displacement may be noisy we resort to the least squares
technique of parameter estimation to permit more than the minimum
number of observations {6 in the case discussed in Section 3.3} to
enhance our estimate of the unknown parameters., With noisy observa-
tions of y(t) = q1 {t). the model for the solution for the initial
condition vector (3. 3. 22) becomes

[qll(t)- qlfp(t)] = éi"’(t,to) qft )+ € (¢))

where € is assumed t{o be a zero mean error vector with a covariance
matrix consisting of identical diagonal elements and zeros off the diagonal
(uncorrelated, equal variance cbservations).
in {3, 3, 22) the notation is used to imply that 6 observations

qll (ti) ; i=1,2,...6 are employed. The notation is quite general.

In (1) above we interpret the situation as corresponding to the case in
which n observations are made, in particular n = 6. Thatis, in

(1) the vector [qi(t) - qi'p(t)] can be interpretedacan n com-
ponent observation vector, the nx 6 matrix @ 1, s(t,. t o) can be
interpreted a matrix of known elements, the 6 x 1 vector q, {t o) is
a vector of unknown parameters or components and the 6 x 1 vector

€ is an error vector. The situation just described corresponds to a
description of the framework for the classical least squares parameter

estimation problemls, In the notation of that discipline equation (1)




e ——————

is wriiien
y=X B + € i2)

where y is a vector of observations, X' is a known transformaiion
matrix, g is an unknown parameter vector and € g as before, =z
zero rmean vector with an equal component diagonal covariance matriy
The least square soluiion of {2) for the esiimnte £  of the unknown
parameter vacix i3

”~~ - F3
Bo-Drtxy )

In an equivalent form the leasi squares solution tc {1} {estimaie

of the unknown initial ~ongiticn vector}, with n > 6 ohservations s
in the form

qfi, ) = [(@ copel)l atopigtar - ol P ) *4}

The soluiion of (1) in the form ¢3) is seen to involve muliiplication
ofa nx6 maitrix (<I>1’ “y* bya 8xn mairix 27°° andinversion
of the resuiting n x n matrix, As the amount of date qathered increages

{n increases) the cost of this compuiational step becomes prohibitive.
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3.5 The Stagewise Estimation Procedure Applied To The Least
Square Solution Of The Quasilinearization Technique

The stagewise estimation schemeg apparenﬂy originated by
Swerhng(.n and improved upon by I-Io(8 perm:ts large amounts of
data to be employed for the purpose of parameter estimation without pro-
hibitive computational costs, In what follows the stagewise estimation
procedure is demonstrated. It will be seen that other than for the first
iteration, the matrix inversion step is completely eliminated. The pro-
cedure is as follows: Consider equation {3, 3,22) in the form

where Y, is the observation vector [qli’ t) - 1" Pet) 1., X} isthe
transformation matrix @ (Lt ) and § is the vector of unknown
parameters q(tO; . In i) and a.ll that follows the suffix k deszgnates
a k component vector or a k row matrix and also signifies that the
vector and matrix are time dependent and hence index dependent,

The least squares solution of {1) is given by (3. 4. 3). This solution

is in fact a consequence of the minimization of the quadratic form

- (e (58 v s -yl @

with respectto 8 .

Consistant with the notation in {1} we write the least squares
estimate (2) in the form

A

-1 ,
B = DX Xyl Xex 3)
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Now if additional data. represented by the m component vector,
Y110 is taken we can represent the model of the observations in the
partitioned matrix form

X 1

yk+l k+1}

In (4) OB,y represents the incremental change in the estimate
of the parameter vector £ due to the new data Yi+le Corresponaing
to (2) . the quadratic form to the minimized to get the new estimate of
B is given by

Q= || % 08+ 080 1wy [P+ [[%plBy + 2810 = 3y, I

{5)

~N
A L - Loae . . | — 2 o e > %
Using the fact tnat X 3k “ Vg the {irst term on the right

hand side of {5) can be written as Aﬁiu-ly‘k X'k AB k+1 ° The second
term can be systematically expanded, Eguation {5) is to be minimized
with respect to Aq‘ +1 the incremental change in the estimate of 8 .
This equation consists of quadratic terms in the form z'Az and linear
termse in the form Bz, Differentiation of these terms with respect to
the vector gives the partial results

—%—5— z'Az = 2Az

57 B - B.



Application of these formulas to the expanded version of {5) and forming
the equation

8 Qk+1
AP = 0 6
a k+1‘ o

yields the result

~ v 1 -1 '
BBy, = [X X v X1 X b X Uy = Xy By )

" Equation (7) is an updating scheme for improving the estimate

B g 28 more observations Y+l @are made. Now we employ a result
used by Ho to eliminate the successive inversion of matrices as indicated
by (7). Let

_ =1 .
(X, Xp1 = % (@
-1
(X, Xt X0 X1] 7 84
Then

_a "~} ! 9
Aprl =B T X %en (%)



Equations {8), and (8) applied to {7) yield the stagewise estimation
procedure

A8 w41 ™ el Fppr e - £ 8y (10)

where

! -1
N . . 11
Bpag = A - A Ky R A X, - DX 48 (D

Equation (11) is seen to involve an inversion of an mxm matrix
where m is arbitrary. In particular we make m =1 and eliminate the
inversion process.
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4. ILLUSTRATIVE COMPUTATIONAL RESULTS AND EXPECTED
EFFORT IN THE SECOND QUARTER

Preliminary computations have been made on the identification
of a simulated one degree of freedom linear system. Independent sam-
ples of a zero mean gaussian random variable are used as a forcing
function into a one degree of freedom linear system represented by a
differential equation. The response of the system to the forcing func-
tion is computed using a Runge-Kutta numerical integration procedure.

The assumed unknown mass, spring and damping parameters of
the system are estimated by the quasilinearization--least squares--
stagewise smoothing procedure. The example illustrated consisted of
an underdamped system that satisfies the equation

mx + cx + kx = flt) {1
Equation (1) is written in the form
X +oyx +a,x =a, if) (2)

We identify the following state variables

Yy =X
Yo =X
Y4=&2
y5=0'3

which leads to the following set of differential equations

5’1 =Y
Yp = " Tg71"Tg¥y * Vst _
Y4 =0

¥g=0
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In vector-matrix form (4) can be expressed as the equation
y=gly.t)

The k + 1 at iterative equation corresponding to (5) is

: - 8g - 2
Yt Ty |, Tea? (el V- 3y — i }
Tk

The original true parameter values chosen were

al = 5
az = 25
ag = 1

x{o) = y (o) = 0
x(o0) = ¥y, {0} =0

The original guesses were

x () = y, @ = ain /10t
x ) = y, () = /10 cos/ 10t

a; = 10
@, = 10
ag T 1¢

(5)

(6)

(7

(8)

The respohse of the simulated sysiem is computad at . 050 second

Five observations are taken,

intervals, the observations used for quasilinearization computation (5 are
required) are taken at .5 second intervals, observaticns used for the
stagewise smoothing are algso taken at . 5 second intervals.
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A table of the vevolution of the estimate of the unknown param-

eters is provided below.

TABLE 1. EVOLUTION OF THE PARAMETER ESTIMATES
True 1st Quasi- Stagewise*| Stagewise** Stagewiser*
Parameter| Value linearization Smoothing] Smoothing| Smoothing
(1) (2) (4)
x{0) 0 0.000 0.000 0.000 0. 000
x{o) 0 0.031 -0.012 -0.017 -0. 000
a, 5 9. 959 9.970 6.333 4. 979
aq 25 10.231 10.11¢ 23.8561 25. 000
@, 1 0. 943 0.919 1.018 1. 004

p=——

where >, %% X%% desgignates the column of estimates obtained after a
total of 10 observations have been on respectively the 1st, 2nd and 4th
iteration. The procedure gave true estimates, to within 3 decimal points
after the 7th iteration.

Figure 1 is a graph of the response of the simulated system com-
rared with the response of the system computed using the parameter esti-
mates given bythe first quasilinearization and stagewise smioothing ifera-
tion. These graphs correspond to computations for the true parameters
and * in Table 1. Similarly, Figure 2 corresponds to computations for
the true parameters and for *% in that Table.

The results presented are preliminary. They represent a first
attempt at verifying the computational procedure. The procedure appears
to work satisfactorily. Additional parameter runs to determine sensitivity
of the computations to the original guess and runs with multidegree of free-
dom systems are contemplated for the next quarterly interval.
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